
Learning to Jump Higher with Muscles

Duo Li∗

University of British Columbia

Abstract

We present a complete system to generate jumping movement for
a given musculoskeletal model. The two main components for our
method are a forward musculoskeletal simulation and an optimiza-
tion of the muscle activation levels. We exploit and extend the
strand model into Hill type muscle model to handle the sliding con-
straints between muscle and skeleton, and incorporate this muscle
model into our dynamics system. The activation control signals
have been modeled as a natural spline, and our optimization auto-
matically generates suitable muscle activation sequences to achieve
a maximum-height jumping movement, without any prior knowl-
edge. We test our system with three different musculoskeltal mod-
els. The results agrees with our common knowledge about jumping.

Keywords: Jumping, Muscle, Strand, CMA

1 Introduction

Recently, muscle based character animation has been draws atten-
tions. Compared with joint torque based approach, using muscles
give the added benefit to animation in terms of robustness due to the
muscle properties [van Soest and Bobbert 1993], extra inertias [Pai
2010], and subtle skin deformations [Sueda et al. 2008]. This mo-
tivates our use of the muscle in this paper.

Although using muscle provides significant advantages, we have to
pay the price in modeling, simulation and control aspects. Due to
the redundancies in musculoskeletal systems, modeling them are
tedious. Moreover, since muscle is strongly connected with skele-
ton, handling the highly constrained dynamical system itself is not
a easy task. Finally, compared with joint based approach, the mus-
cle activation based controller not only maintains a relatively high
dimensionality which makes the control space too large to be di-
rectly solved, but it also provides no direct or intuitive mapping to
the desired movement such as using the PD control method.

Maximum-height jumping is a good example to demonstrate both
the advantages and disadvantages of muscle based animation. On
one side, compared with high gain joint torque based approach, the
extra inertia of muscles reduce the magnitude of input signals of
the system, which enhances the robustness of the system. On the
other side, jumping introduces several diffculties: 1) muscles used
for jumping sometimes involve more than two insertion points. For
example, the vasti muscle in human leg slides around the knee3.
Purely Lagrangian based muscle model can not handle this con-
straint easily. 2) The jumping behavior is ridled with local minima.

∗e-mail: duoli@cs.ubc.ca

For instance, squatting a little or even lifting the heel generate a
small upward acceleration, but maximal height jumping needs a
deep enough squatting stage, though it is not a greedy choice.

In this project, we simulate and control the maximum-height jump-
ing. Our system consists of two main components: simulating mo-
tion and optimizing control strategies. We simulate the musculos-
ketal system with rigid segments and strand model in maximal co-
ordinates. The muscle activation level signals drive our system for-
wardly. The second component provides an automatic way to dis-
cover the best activation sequences for jumping. We empoly an op-
timization technique called Covariance Matrix Adaptation (CMA)
to explore the domian of possible activation curves. Finally, we
apply three different musculoskeletal models into our system, and
observe the generated jumping gaits.

2 Jumping Simulator

2.1 Skeleton Model

We model the skeleton with several planar articulated rigid cuboids.
Each two adjacent segments are connected with a hinge joint.
To mimic the friction bewteen the ground and the lowest linkage
(ususally the foot), we also place a fake friction joint, which con-
strains the lowest linkage from sliding on the ground, but allowing
it to move upward and rotate along y axis (see Figure 3). After the
skeleton jumps off the ground, we cancel this ‘friciton’ joint.

2.2 Muscle Model

Linkages are connected by a group of muscles. Any simple move-
ment is the result of the coordinated activation of all the muscles.
Purely Lagrangian methods (e.g. mass spring systems, FEM) can-
not capture the sliding between muscle and bones easily (e.g. Fig-
ure 3, vasti muscle). Instead, we employ the strand model [Sueda
et al. 2011], which combines both the Lagrangian method and Eu-
lerian method to handle this muscle-bone sliding problem. Usually,
a curve can be represented with a bunch of control points and in-
termediate segments. In Lagrangian model, the control point q is
defined by its world position, q = [x, y, z]. In contrast, for Eulerain
model, the control point q need to be defined as its material coordi-
nate, that is q = [s]. Strand model incorprates both the Lagrangian
part and Eulerian part into the state vector, q = [x, y, z, s]. This
representation allows the material to flow around control points.
Details of this method can be found in [Sueda et al. 2011].

We still need several modifications to exploit strand model for sim-
ulating the Hill type muscle [Hill 1938]. Generally, the Hill type
muscle can be written as

f = fl(ε)fv(ε̇)factive + fpassive (1)
(2)

ε is the strain on the strand. In this project, we use Cauchy linear
strain ε = l

s0
− 1, where l is the current length of the segment,

s0 is the initial Eulerian distance and therefore the rest length of
this segment. fl provides the coefficent of the active force with re-
spect to the current strain, which is also proportional to the current
segment length. fv is the coefficent for current strain rate, which



Figure 1: Ostrich jumping: maximizing the top-middle point of the trunk

Figure 2: Ostrich jumping: maximizing the top-right point of the trunk

corresponds to the contraction velocity. Active force factive is lin-
ear with strain. Passive force fpassive is linear when the strand has
been stretched, but it will be cancelled out during contraction. Our
derivation of strain ε and strain rate ε̇with respect to the specifically
mixed Lagrangrian-Eulerain state q can be found in Appendex A.

factive = kpε (3)

fpassive =

{
kpε, if ε ≥ 0

0, if ε < 0
(4)

2.3 Overall Equation of Motion

Finally, we incorprate both the muscle and the skeleton into a
quadratic programming equation:

Mq̇t = M ˙qt−1 + hfext, (5)

with equality constraints (joint)

Giq̇t = 0, (6)

and inequality constraints (joint limits, strain limits, contact con-
straints)

Geq̇t ≥ 0 (7)

M is the total mass matrix (it is not diagnal due to the strand). Ge

and Gi are the equality and inequality constraint matrices. Because
the constraints are solved at velocity level, the system may drift
away from the constraint manifold over time. To compensate for
this drift, we add a post-stabiliztion step [Cline and Pai 2003] af-
ter taking a position step to get a correction vector δq.Finally, the
generalized positions are updated as q = q0 + δq.

3 Optimization

Each muscle has different functionality. We suppose that the char-
acter has no prior knowledge about this, and allow it learn how to
jump automatically.

3.1 Control Signal Respentation

Usually the simulation takes several hundred time steps. Encoding
all the control signals for all the time steps incurs the curse of di-
mensionality. Instead, we uniformly sample the time axis to obtain
several points in time. Therefore, activation levels on these points
of time for each muscle are the actual control signals which we are
applying into our system. All intermediate activation levels will be
interpolated with a natural spline accroding to the current time step.
The signals will be clamed to [0, 1] if it exceeds this range.

3.2 Objective Function

The objective function in our system mainly tries to maximize the
vertical distance of jumping, yet takes into account the amount of
energy consumed.

u = arg minw1H + w2

∑
i,j

(aij), (8)

H is the maximal height during this whole jumping movement. aij
is the activation level for muscle j at time step i. It is generated
by the sampled control signal u via the natural spline. w1 and w2

are the weights. Because we mainly want to measure a one-time
jumping, we stop the simulation when the model starts to decline,
or a second collision happens between foot and ground.



3.3 Optimization

Although our objective function is very simple, it prones to local
minima due to sub-optimal jumping gaits, contact with ground and
etc. Many previous works shows that Covariance Matrix Adapta-
tion (CMA) is a suitable choice for this stituation. CMA evaluates
the objective function value with a population of samples over the
parameter space. Samples with low objective function value will be
discarded. Then CMA updates its mean and variance matrices to
build a new sampling distribtuion upon the previous population of
samples with high objective function value. After many iterations,
it converges to a optimal solution with low covariance. More details
of CMA method can be found in [Hansen and Kern 2004]

4 Experiments and Results

We tested our system with three different models: a human(Figure
3), ostrich(Figure 4), and fish(Figure 5) model. The wire-frame box
stands for bone segments, and the green-violet line represents the
muscles. The solid sphere stands for the Lagrangrian node that the
material coordinate is fixed on at this point, while the wire-frame
box node denotes the Eulerian node which permits the changes on
the material coordinate. The red-green-blue coordinate diagram
represents the joint axis. Since we mainly consider the jumping
in 2D, all joints on the skeleton are hinge joint that only rotation
around y axis (green arrow) is permitted.

4.1 Models

Figure 3: Human model

Following [Marcus G. Pandy and Levine 1992], we model the
human body (Figure 3) with four segments (foot, shank, thigh,
trunk), with three hinge joints to connect the adjacent segments (an-
kle, knee, hip). Toe-Ground joint is the fake friction joint. Eight
muscles connect these four segments: soleus (SOL), gastrocne-
mius (GAS), platarflexors (OPF), tibialis anterior (TA), vasti (VAS),
rectus femoris (RF), hamstrings (HAMS), and gluteus maximus
(GMAX).

Figure 4: Ostrich model

Although real ostrich contains four links on its leg, we model the
ostrich (Figure 4) by removing the short knee joint, as well as flip-
ping the RF, HAMS, and VAS muscles from human model to mimic
this backward-leg creature since we can not get the real anatomical
data.

Figure 5: Simplified fish model. Note that actually the muscle dis-
tribution is symmetric. For the sake of convenience, we only show
M1, M3 on the upper side and M5 on the downside. Their counter-
part muscles M2, M4, M6 reflect on the other side

Finally, we also applied our system into a non-leg model: a three-
segment fish lies on the ground (Figure 5). The right shorter link
is its head and the left longer link is its tail. We hope that the fish
can learn to jump off the ground to maximize the height of its head.
Again the left joint is the joint used to mimic friction. It constrains
the tail from sliding on the ground surface.

4.2 Optimization Results

Figure 6: Human jumping for 1st iteration

Let us first consider the human model. We place the measurement
point on the top left corner of trunk segment (Figure 3). In the first
few iterations, the model learns to use RF, HAMS and GAS to squat
shallowly, and then strectch VAS to generate a larger upward force,
yet in a very inefficient way (Figure 6).

Figure 7: Human jumping for 15th iteration

After 15 iterations, it learns to lift its body around ankle joint with
OPF and SOL muscles, yet it still do not know to gain more scores
by raising its trunk (Figure 7).

Finally, after 50 iterations, The human model is able to coordinate
its inertia distribution, and jumps very efficiently (Figure 8).

For the ostrich model, we first place the measurement point on the
top-left corner of the trunk (Point A in Figure 4). It has a simi-
lar convergence pattern as the human model. The model learns to
crouch first with proper muscles, and then jumps with another group
of muscles. Moreover, During jumping, it learns to lift its right side



Figure 8: Human jumping for 50th iteration

of the trunk to obtain a higher gain (I in Figure 2). An interesting
finding is that when we adjust the terminal condition to allow the
model to fall back on the floor several times, CMA returns us a pat-
tern where the ostrich learns to adjust its posture by several small
hopping steps. It crouches to get the inertia in a suitable direction,
and then jump higher than previous experiment configuration.

We then place the measurement point on the top-middle of the high-
est segment (Point B in Figure 1). CMA returns us a different op-
timal solution that instead of tilting up the upper block, the upper
block remains close to horizontal (Figure I in Figure 1) at the opti-
mal height configuration. These cases demonstrates that our system
can handle muscle coordination successfully and robustly.

Figure 9: Fish jumping

The last experiment is to let the fish learn to jump off the ground,
while maximizing the height of its head. Surprisingly, after only
one iteration with 40 samples, the fish can find a nice pattern that lift
its head using its tail to accelerate the whole body (Figure 9). The
following iterations only improve this solution a little bit (Figure
10). However, since we use a very simple muscle model with only
three links, the fish cannot actually flips its head and then jumps
with its tail as we expect. A better anatomical model should im-
prove this experiment significantly.

4.3 Convergence

Figure 10 plots the convergence behaviours for our four test cases.
We can observe that although the mean of objective function value
decreases after many iterations, only with less than 10 iterations, we
can sample several nice candidate solutions which are very close to
the final optimal one. Therefore, we can memorize the best solution
for every iteration. If the objective value converges to a certain
envelope, we can assume that the whole optimization has converged
already.

Finally, thanks to the muscle property that penalizes the elonga-
tion and fast contraction, with different muscle activation level pat-
terns, we can achieve similar jumping sequences. The advantage of
this is that it demonstrates the robustness of muscle based control
model. However, it also makes the optimization more difficult to
solve since it is a highly multi-root system.

Figure 10: Convergence: x axis is the iterations, y axis is the objec-
tive function values. Upper left figure for human model; upper right
figure for ostrich model with measurement point A; lower left figure
for ostrich model with measurement point B; lower right figure for
fish model

5 Implementaion and Performance

Since we need to use the novel strand model, we developed our own
forward physics engine including a rigid body dynamics system, a
strand simulator, OBB based collision detection, and contact han-
dling. For the sparse matrices computation, we exploit the CSparse
library. For the QP solver, we use a dense solver called QL. We also
employ Boost library for seriliazing and unseriliazing to reload the
simulator for optimization. Finally, our optimization is based on the
open source CMA package. We run our system on an Intel i5 core
machine with 4GB memeory. The forward simulation usually takes
only about 1-3 seconds. But the optimization takes about a couple
of hours to converge. However, good candidate solution shows up
after only 3-10 iterations.

6 Conclusions and Future Work

In conclusion, we have developed a complete system that auto-
matically generates optimal jumping movement with input mus-
culoskeletal model, even for a model with no legs. It learns the
coordinated activation of muscles successfully, albeit slowly. Due
the time limitation, we have not tested our system for a 3D case,
or with full skeleton model. Incorprating more parts of the mus-
culoskeletal model such as arms and bendable spine for human
model should improve the realism, but the increased Dofs for con-
trol signals may impede the optimization convergence. Also, in this
project we exploit the simple spline interpolation for control signals
without futher disscussions. Although this seems to work, a better
parametrization apporach should improve our system to a large ex-
tent. Finally, we also want to extend our system to learn forward
jumping.

7 Gains and Challenges for this project

I was always curious about how the animation system works. With
this project, I walked through the whole pipeline of the animation
system from modeling to simulation, and finally control. I learned
lots of specific techniques such as CMA, strand model and etc. In
addition, extending strand model into muscle model is a nice mathe-
matic practice for me. The main challenge I encountered during this
project is how to specify the parameters for CMA. It takes a long
time to run a whole optimization, so I need to analyze very care-
fully before I apply any changes of the parameters into the CMA.
Besides, tuning parameters for muscle properties is also a tedious



work, which costs me lots of time either.

Acknowledgements

We would like to thank Professor Michiel van de Panne and Profes-
sor Dinesh Pai for their valuable sugguestions and guidance on this
project. We also want to thank Shinjiro Sueda for his help on the
strand simulation.

Appendix A

This appendix shows how to calcuate strain ε and strain rate ε̇.
Suppose we have two points q0 = [x0, s0], q1 = [x1, s1], q =
[x0, x1, s0, s1]T , q̇ = [ẋ0, ẋ1, ṡ0, ṡ1]

E =
1

2
Y ε2V0 =

1

2
Y ε2∆sA (9)

=
1

2
kpε

2∆s (10)

ε = (

√
∆xT ∆x

∆s
− 1) (11)

∆s = s1 − s0 (12)
∆x = x1 − x0 (13)

E is the elasticity energy. Young’s modular coefficent Y times area
of this segment A forms a coefficient kp

With chain rule, we get

∂E

∂(∆x)
= kpε

∆x√
∆xT ∆x∆s

(14)

∂E

∂(∆s)
=

1

2
kpε(ε+ 2) (15)

Therefore,

∂E

∂q̇
= [kpε

∆x√
∆xT ∆x∆s

(−I, I),
1

2
kpε(ε+ 2)(−1, 1)]q̇ (16)

References

CLINE, M. B., AND PAI, D. K. 2003. Post-stabilization for rigid
body simulation with contact and constraints. In ICRA, 3744–
3751.

HANSEN, N., AND KERN, S. 2004. Evaluating the cma evolution
strategy on multimodal test functions. In PPSN, 282–291.

HILL, A. 1938. The heat of shortening and dynamics constants
of muscles. Proc. R. Soc. Lond. B (London: Royal Society) 126,
843 (Oct).

MARCUS G. PANDY, FELIX E. ZAJAC, E. S., AND LEVINE, W. S.
1992. An optimal control model for maximum-height human
jumping. J. Biomechanics 25, 2 (Feb), 207–9.

PAI, D. K. 2010. Muscle mass in musculoskeletal models. J.
Biomechanics 43, 11 (Aug), 2093–2098.

SUEDA, S., KAUFMAN, A., AND PAI, D. K. 2008. Musculo-
tendon simulation for hand animation. ACM Trans. Graph. 27
(August), 83:1–83:8.

SUEDA, S., JONES, G. L., LEVIN, D. I. W., AND PAI, D. K.
2011. Large-scale dynamic simulation of highly constrained
strands. ACM Trans. Graph. 30 (August), 39:1–39:10.

VAN SOEST, A. J., AND BOBBERT, M. F. 1993. The contribu-
tion of muscle properties in the control of explosive movements.
Biological Cybernetics.


